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Motivation
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Example 1: Hodgkin-Huxley model

Conductance-based model of action potential in neurons:
I = Cm

dVm
dt + ḡKn4(Vm − VK) + ḡNam3h(Vm − VNa) + ḡl(Vm − Vl)

dn
dt = αn(Vm)(1− n)− βn(Vm)n
dm
dt = αm(Vm)(1−m)− βm(Vm)m
dh
dt = αh(Vm)(1− h)− βh(Vm)h

▶ I — membrane potential
▶ n,m, h — quantities between 0 and 1 that are associated with potassium

channel activation, sodium channel activation, and sodium channel
inactivation.

References: Hodgkin and Huxley (1952) — 1963 Nobel Prize in Physiology or
Medicine,
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Example 2: FitzHugh-Nagumo model

The behaviour of the neuron is defined through:{
dXt =

1
ε (Xt − X3

t − Yt − s)dt

dYt = (γXt − Yt + β)dt

▶ Xt — membrane potential
▶ Yt — recovery variable
▶ s — magnitude of the stimulus current
▶

References: Fitzhugh (1961), Nagumo et al. (1962)
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Example 2: FitzHugh-Nagumo model

The behaviour of the neuron is defined through:{
dXt =

1
ε (Xt − X3

t − Yt − s)dt+σ1dW1
t

dYt = (γXt − Yt + β)dt+σ2dW2
t

▶ Xt — membrane potential
▶ Yt — recovery variable
▶ s — magnitude of the stimulus current
▶ σ1, σ2 ≥ 0 — diffusion coefficients (possibly null)

References: Fitzhugh (1961), Nagumo et al. (1962)
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FitzHugh-Nagumo model
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Figure: Neuronal activity simulated with stochastic FitzHugh-Nagumo model.
A. Melnykova (Grenoble INP) Dimensionality tests 5 / 47



Where to put noise?

Main challenges:
▶ Highly non-linear

systems
▶ Computational cost
▶ Measurements

inaccuracy

Figure: Membrane potential simulated wiht a
FitzHugh-Nagumo model: deterministic, hypoelliptic,
elliptic system

References: see Tuckwell (2005) for a general overview of neuronal models
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Formalization

Given:
Discrete observations of the d-dimensional process X with a fixed time step∆

dXt = btdt+ σtdWt, t ∈ [0, T], (1)

bt ∈ Rd, σt ∈ Rd×q.

Goal:
Propose a test

H0 : rank(Σ) = r

H1 : rank(Σ) ≤ r,

where Σ = σtσ
T
t . If σt is not constant, we search sup

t
rank(Σ) instead.
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Ellipticity vs Hypoellipticity

Definition (Ellipticity)

We say that the system (1) is elliptic, if its covariance matrix is of full rank
(rank(Σ) = d).

Definition (Hypoellipticity)

We say that the system (1) is hypoelliptic, if its covariance matrix is not of full rank
(rank(Σ) < d), but the process X has a smooth transition density. It can be verified
by Hörmander condition.

Remark
In this talk, when referring to ”hypoelliptic” systems we will mean systems where some
coordinates are not perturbed by the Brownian motion or some diffusion coefficients
are negligibly small with respect to a given discretization step∆.
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What do we want to study?

Given a d-dimensional process X i = 1, . . . ,N, the main statistics is defined as

S =
1

n

ninc∑
i=1

detΦ2
i ,

where:

Φi :=


X(1)id+1−X(1)id√

∆

X(1)id+2−X(1)id+1√
∆

. . .
X(1)id+d−X(1)id+d−1√

∆
X(2)id+1−X(2)id√

∆

X(2)id+2−X(2)id+1√
∆

. . .
X(2)id+2d−X(2)id+d−1√

∆

· · · · · · · · · · · ·
X(d)id+1−X(d)id√

∆

X(d)id+2−X(d)id+1√
∆

. . .
X(d)id+d−X(d)id+d−1√

∆


2

(2)

References: Jacod et al. (2008), Jacod and Podolskij (2013)
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Why this statistics?

Main statistics is defined as

S =
1

n

ninc∑
i=1

detΦ2
i .

▶ Under certain assumptions, the entries are independent. It is simpler to derive
the probabilistic properties of the process.

▶ It can be profitable to study the distribution of rows.
▶ It has the following important property:

detΦ2
i ≈ O(∆d−r0),

where r0 is the rank of Σ.
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Determinant expansion (Jacod and Podolskij, 2013)

If we use a very rough approximation (for example, Euler-Maruyama), we can write
the matrix Φi as follows:

Φi ≈ Ai +
√
∆Bi,

where Ai is a matrix constituted of the increments of the diffusion term, and Bi is
a matrix of increments of the drift term. Then,

det
(
Ai +

√
∆Bi

)
= detAi +

√
∆γd−1(Ai,Bi) + · · ·+ (

√
∆)d detBi,

where γk(Ai,Bi) denotes a sum of determinants of all possible matrices created
from k columns of Ai and d− k columns of Bi (without permutation).
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Determinant expansion: deterministic 3d-example

det(E+ hD) =

det

e11 + hd11 e12 + hd12 e13 + hd13
e21 + hd21 e22 + hd22 e23 + hd23
e31 + hd31 e32 + hd32 e33 + hd33

 = det

 e11 e12 e13
e21 e22 e23
e31 e32 e33

+

hγ2(E,D)︷ ︸︸ ︷
h det

 e11 e12 d13
e21 e22 d23
e31 e32 d33

+ h det

 e11 d12 e13
e21 d22 e23
e31 d32 e33

+ h det

 d11 e12 e13
d21 e22 e23
d31 e32 e33

+

h2γ1(E,D)︷ ︸︸ ︷
h2 det

 e11 d12 d13
e21 d22 d23
e31 d32 d33

+ h2 det

 d11 d12 e13
d21 d22 e23
d31 d32 e33

+ h2 det

 d11 e12 d13
d21 e22 d23
d31 e32 d33

+

h3 det

 d11 d12 d13
d21 d22 d23
d31 d32 d33


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Determinant expansion (Jacod and Podolskij, 2013)

What this result means:
▶ rank(Σ) = r0 means that d− r0 variables are not perturbed by noise. In this

case, the matrix Ai will also have a rank r0.
▶ Asymptotically, when∆ → 0, the structure of drift plays no role in the

accuracy of the test. Only increments of the Brownian motion matter.
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Naive approach: Jacod et al. (2008)

▶ Compute matrices of increments (6)
▶ Define a converging sequence {ρN} of ”thresholds”, s.t.:

ρN → 0, ρN
√
N → ∞

▶ Define by Ar class of all subsets of {1, . . . d} with r elements. Define detK Σ
the determinant of r× r submatrix of Σkl, k, l ∈ K. Finally, define:

det(r; Σ) =
∑
K∈Ar

det
K

Σ (3)

▶ R̂T,∆ = inf
{
r ∈ {0, . . . , d− 1} : 1

∆(r+1)!

∑N−r+1
i=1 det(r+ 1;Φi) < ρNT

}
Remark
Note that det(1; Σ) = Tr(Σ), and det(d; Σ) = det(Σ).
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Remarks to the method of Jacod et al. (2008)

▶ Main idea of the method: we check if the determinant of the submatrix of a
given rank is ”small enough”

▶ In practice, the method is extremely costly and difficult to apply: to
compute the estimator we need to compute all possible minors of dimension
from 1 to r and then compare them to a manually tuned threshold.

▶ The last problem can be omitted if we compare the determinant of a matrix to
some threshold directly (since we know that it must is of order∆d−r0 ).

▶ Disregarding of a threshold, the method will perform poorly in a
non-asymptotic setting.
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Random perturbation approach

Main reference: Jacod and Podolskij (2013)

Given a d-dimensional diffusion process X, consider 2 new processes:

X̃(k)
t = Xt +

√
k∆σ̃W̃t,

where k = 1, 2, and σ̃ is such that σ̃σ̃T =: Σ̃ is a non-random matrix of full rank.

Sk = 2d∆
N−1∑
i=0

det



X̃1,(k)2id+k−X̃1,(k)2id√
k∆

X̃1,(k)2id+2k−X̃1,(k)2id+k√
k∆

. . .
X̃1,(k)2id+2d−X̃1,(k)2id+kd−k√

k∆
X̃2,(k)2id+k−X̃2,(k)2id√

k∆

X̃2,(k)2id+2k−X̃2,(k)2id+k√
k∆

. . .
X̃2,(k)2id+2d−X̃2,(k)2id+kd−k√

k∆
· · · · · · · · · · · ·

X̃d,(k)2id+k−X̃d,(k)2id√
k∆

X̃d,(k)2id+2k−X̃d,(k)2id+k√
k∆

. . .
X̃d,(k)2id+2d−X̃d,(k)2id+kd−k√

k∆



2
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Random perturbation approach

Define:

R̂T,∆ = d−
log S2

S1

log 2

VT,∆ := Var
[
R̂T,∆

]
=

(
E[S1T ]
E[S2T ]

)2
Var[S2T]− 2

E[S1T ]
E[S2T ]

Cov[S1TS
2
T] + Var[S1T]

(E[S1T] log 2)2
.

Jacod and Podolskij (2013)

R̂T,∆ − r0√
∆VT,∆

L−→ N (0, 1), as∆ → 0
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How does it work?

Main idea: compute how ”different” are matrices Φ(1)
i and Φ

(2)
i (matrices of

increments constructed with a different discretization step).

Remember that:
det (E+ 2hD)
det (E+ hD)

≈ 2d−r,

for any matrices E and D.

Because:
det (E+ hD) = det E+ hγd−1(E,D) + · · ·+ hd detD,

where γr, r = 1, . . . , d stands for a sum of determinants of all possible matrices,
whose r columns are equal to r columns of a matrix E (with the same indexes), and
the remaining d− r — to the corresponding columns of a matrix D.
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How does it work: toy 1d example

Take the process:
dXt = adt+ σdWt

Add a random perturbation:

X̃(1)
t = adt+ σdWt +

√
∆σ̃W̃t,

X̃(2)
t = adt+ σdWt +

√
2∆σ̃W̃t

Using the first-order approximation, compute:

E

( X̃(k)
i+1 − X̃(k)

i√
k∆

)2
 = σ2 + k∆a+ k∆σ̃ =: ski

Notice that
S2

S1
−→
∆→0

{
1 if σ ̸= 0

2 if σ = 0
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How does it work: toy 1d example

Take the process:
dXt = adt+ σdWt

Add a random perturbation:

X̃(1)
t = adt+ σdWt +

√
∆σ̃W̃t,

X̃(2)
t = adt+ σdWt +

√
2∆σ̃W̃t

Using the first-order approximation, compute:

E

( X̃(k)
i+1 − X̃(k)

i√
k∆

)2
 = σ2 + k∆a+ k∆σ̃ =: ski

Notice that

S2

S1
−→
∆→0

{
1 if σ ̸= 0

2 if σ = 0
⇒ 1−

log S2

S1

log 2
−→
∆→0

{
1 if σ ̸= 0

0 if σ = 0
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What happens if ∆ is fixed?

Take the process:
dXt = bdt+ σdWt

Fix: ∆ = 0.01, σ = 0.05, b = 1, σ̃ = 0.01

Add the random perturbation:

X̃(1)
t = bdt+ σdWt +

√
∆σ̃W̃t,

X̃(2)
t = bdt+ σdWt +

√
2∆σ̃W̃t

Notice that

E

[
S2

S1

]
≈ 1.8 ⇒ E

[
R̂T,∆

]
≈ 0.15
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What happens if ∆ is fixed?

Conclusions for the methods from Jacod et al. (2008) and Jacod and Podolskij
(2013):
▶ Method of Jacod et al. (2008) is powerful, but requires a careful tuning of

thresholds. In addition, it is difficult to quantify a probability of wrongly
rejecting ellipticity assumption.

▶ Method of Jacod and Podolskij (2013) is easy to interpret (two-sided test), but
requires tuning of the perturbation rate (not relevant when∆ is negligible)

▶ Both methods perform rather poor when∆ is large.
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What happens if ∆ is fixed?

Ongoing work

A. M., Adeline Samson, Patricia Reynaud-Bouret

Question 1: What can we actually infer in a non-asymptotic setting?
What do we do: study the distribution of the statistics S in a non-asymptotic
setting.

Question 2: How can we ameliorate the performance of the test in a
non-asymptotic setting?
What do we do: We center the increments around their mean value. Numerically,
it implies that the method needs to be coupled with the estimator of the drift.
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Structure of the project

Ongoing work

A. M., Adeline Samson, Patricia Reynaud-Bouret

▶ First, we evaluate the distribution of S when it can be done explicitly: in 1- and
2-dimensional case.

▶ Second, we demonstrate how the test works in practice.
▶ Finally, we consider a d−dimensional case and evaluate the distribution of the

statistics S with concentration inequalities.
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1d toy model

Consider a one-dimensional process with constant drift and diffusion coefficients:

dXt = bdt+ σdWt

Our aim is to construct the following test:

H0 : σ2 = δ

H1 : σ2 ≤ δ,

where δ is a pre-chosen parameter.
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1d toy model

The main statistics of the test is given by

S =
1

n

n−1∑
i=1

(
X(i+1)∆ − Xi∆

)2
=

σ2

n

n−1∑
i=1

(
ηi +∆

b
σ

)2

,

where ηi are i.i.d. distributed standard normal variables. Then,

S ∼ σ2

n
χ2
n(λ),

where χ2
n(λ) is a chi-squared distributed random variable with a non-centrality

parameter λ, defined as follows:

λ(σ) =
∆2b2

nσ2
.
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1d toy model

Now let us define a α-quantile under H0. Note that

P (S ≤ ε) = 1− Qn/2

(√
λ(δ),

√
ε

δ

)
,

where Qm(a, b) is a Markum Q-function, defined as:

Qm(a, b) =
∫ ∞

b
x
(x
a

)m−1

exp
(
−x2 + a2

2

)
Im−1(ax)dx, (4)

where Im−1 is a modified Bessel function of the first kind.
Then, H0 hypothesis is rejected if S ≥ zα, where zα is such that

Qn/2

(√
λ(δ),

√ zα
δ

)
= α.
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Some remarks

▶ One-dimensional test has a purely mathematical interest: it shows how S
behaves when it is constructed on 1− dimensional process. If we observe a
discrete trajectory of a continuous process, it is straigtforward to see if it is
deterministic or not.

▶ The non-centrality parameter is of order O(∆2). It means that as∆ → 0, the
law of S transforms in a standard chi-squared law. The same effect is
attained if we center the statistics S.

▶ Note that we do not do any approximation for the tail probabilities of S,
quantiles are explicit. They can be evaluated in most of the statistical
packages.
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2-dimensional case (drift known)

Consider a 2-dimensional process, defined by the solution of:

dXt = btdt+ σdWt, (5)

▶ bt = (b1t , b
2
t )

T is a drift vector

▶ σ =

(
σ1 0
0 σ2

)
,

▶ W is a 2-dimensional Brownian motion.

Non-asymptotic setting

Observations of the process are available with a fixed time step∆!
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Outline of the results for 2-dimensional test

▶ First, we modify the statistics first proposed by Jacod et al. (2008) to obtain a
good separation rate.

▶ Second, we study the distribution of the new modified statistics.
▶ Then, we explain under which condition the Type I and Type II error can be

controlled (i.e., wrongly rejecting, or wrongly failing to reject the
ellipticity assumption)

▶ Finally, we do a numerical study and explain why the previous methods do not
work very well for a fixed∆.
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First step: centering the statistics

We assume the drift bt to be known. Then, we can write the ”centered matrix”:

Φ̇i =

 X(1)

(2i+2)∆
−X(1)

(2i+1)∆
−
∫ (2i+2)∆

(2i+1)∆
b(1)t dt

√
∆

X(1)

(2i+1)∆
−X(1)

2i∆−
∫ (2i+2)∆

(2i+1)∆
b(1)t dt

√
∆

X(2)

(2i+2)∆
−X(2)

(2i+1)∆
−
∫ (2i+2)∆

(2i+1)∆
b(2)t dt

√
∆

X(2)

(2i+1)∆
−X(2)

2i∆−
∫ (2i+2)∆

(2i+1)∆
b(2)t dt

√
∆


What has changed: Now, only the ”power” of noise determines the order of
statistics!
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2-dimensional case (drift known)

The density of the distribution of det Φ̇2
i can be written explicitly.

Proposition

Denote ṡi := det Φ̇2
i . The following holds for all i:

P (ṡi ≤ x) = 1−
(√

x
σ2
1σ

2
2

+ 1

)
e
−
√

x
σ2
1σ2

2

NB: Based on the result of Wells et al. (1962) about the product of two chi-squared
variables with k and k− 1 degrees of freedom. The same paper provides an
analogous result for two chi-squared variables with non-centrality parameter.
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Second step: transforming the statistics

Denote Ṡ = 1
n

∑n
i=1 ṡ. Recall the result about the determinant expansion from

Jacod and Podolskij (2013): when the diffusion matrix is of full rank, then ∀i

Ṡ = O(1).

Then, if the system is elliptic,
log Ṡ
log∆

= 0.

So, the hypothesis of ellipticity (σ2
1σ

2
2 = δ) will be rejected if log Ṡ

log∆ is ”large
enough”.
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2-dimensional case (drift known)

Proposition

Under H0 the following bound holds:

P0

(
Ṡ ≤ δ

(
1 + LW

(
− (1− α)1/n

e

))2
)

≤ α ∀α > 0,

where Ṡ = 1
n

∑n
i=1 ṡ and LW denotes Lambert W function.

Then the decision rule is the following:

H0 is rejected if
log Ṡ
log∆

≥ log zα
log∆

,

where zα := δ
(
1 + LW

(
−α1/n

e

))2
.
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2-dimensional case (drift known)

Proposition (Type II risk)

For fixed levels of Type I and Type II risks α > 0 and β > 0 respectively and if

σ2
1σ

2
2 ≥ δ

1 + LW
(
− (1−α)1/n

e

)
1 + LW

(
−β1/n

e

)
2

,

the following inequality holds: P1

(
Ṡ ≥ zα

)
≤ β.

Proposition

For α, β ∈ (0, 1), the following holds when n → ∞:

lim
n→∞

1 + LW
(
− (1−α)1/n

e

)
1 + LW

(
−β1/n

e

)
2

=
ln(1− α)

lnβ
.
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How to implement it in practice?

Of course, in practice the drift is not known. However, we can estimate it:
▶ Non-parametrically (for example, with kernel estimates)
▶ Parametrically (Bayesian statistic, contrast estimators etc).

How do we proceed:
▶ We estimate the parameters of the system with least-square estimates

(Kutoyants, 2013)
▶ We plug-in the estimators in the system and substract the higher-order term in

drift approximation
▶ We build Ṡ and evaluate it under H0 and H1 hypothesis.
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Performance on FitzHugh-Nagumo model

Parameters are the following:
▶ Elliptic case: ε = 0.1, β = 0.3, γ = 1.5, s = 0.01, σ1 = 0.1, σ2 = 1.
▶ Hypoelliptic case: ε = 0.1, β = 0.3, γ = 1.5, s = 0.01, σ1 = 0, σ2 = 1.

Procedure:
1. Generate 1000 trajectories with∆ = 1e− 5, T = 10, using 1.5 strong order

scheme (see Kloeden et al. (2003))

2. Subsample the data with a bigger∆ (fixing n = 1000).

3. Compute test statistics for elliptic and hypoelliptic data

4. Report the results
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”Old” setting, based on (Jacod et al., 2008)

Test
We are interested in the following hypotheses:

H0 : σ2
1σ

2
2 = δ

H1 : σ2
1σ

2
2 ≤ δ,

where δ is some chosen ”sensitivity” threshold.

Statistics
Consider vectors of increments:

Φi =

 X(1)

(2i+2)∆
−X(1)

(2i+1)∆√
∆

X(1)

(2i+1)∆
−X(1)

2i∆√
∆

X(2)

(2i+2)∆
−X(2)

(2i+1)∆√
∆

X(2)

(2i+1)∆
−X(2)

2i∆√
∆


Denote si = detΦ2

i and S =
∑n

i=1 si.
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Figure: Distribution of the test statistics S (uncentered) for 1000 trajectories, sampled with
different step sizes. Elliptic case (blue color) corresponds to the case σ1 = 0.1, σ2 = 1,
hypoelliptic case (rose color) — to σ1 = 0, σ2 = 1.
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Problems with the test

There are two main problems with the tests:
▶ First, statistics coincide when∆ is not small enough. Reason: drift has an

order
√
∆, which is equal to σ1 in the elliptic case for∆ = 0.01.

▶ Second, it seems that an ”optimal” threshold is linked to the step size. It is
difficult to set.
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Figure: Distribution of the test statistics Ṡ for 1000 trajectories, sampled with different step
sizes. Elliptic case (blue color) corresponds to the case σ1 = 0.1, σ2 = 1, hypoelliptic case
(rose color) — to σ1 = 0, σ2 = 1.
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What happens in a d-dimensional case?

In the last part of the presentation, we want to go back to the ”classical” setting
adopted by Jacod et al. (2008), Jacod and Podolskij (2013), for the following reasons:
▶ It is interesting how S behaves in a high-dimensional non-asymptotic

setting.
▶ Results, studying the distribution of a determinant for matrices with

non-centered, not-unit variance, not identically distribed normal entries are
not available.

▶ It is interesting (though challenging) to give the conditions when the
asymptotic setting fails to separate two hypotheses.
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Generalization to a d-dimensional case

Now, consider a d-dimensional process X, which solves

dXt = Atdt+ BtdWt,

where At, Bt — unknown time-dependent d and d× d-dimensional drift and
diffusion coefficients respectively. Discrete observations of X are available with a
fixed time step∆.

We are interested in the following hypotheses:

H0 : σ2
1 · · · · · σ2

d = δ

H1 : σ2
1 · · · · · σ2

d ≥ δ.
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Main statistics of the test

Consider the matrix:

Φi :=


X(1)id+1−X(1)id√

∆

X(1)id+2−X(1)id+1√
∆

. . .
X(1)id+d−X(1)id+d−1√

∆
X(2)id+1−X(2)id√

∆

X(2)id+2−X(2)id+1√
∆

. . .
X(2)id+2d−X(2)id+d−1√

∆

· · · · · · · · · · · ·
X(d)id+1−X(d)id√

∆

X(d)id+2−X(d)id+1√
∆

. . .
X(d)id+d−X(d)id+d−1√

∆


2

, (6)

i = 1, . . . , n, and we denote each vector-column in this matrix by ξji .

The main statistics of the test is defined as follows:

S =
1

n

n∑
i=1

detΞ2
i

Main reference
Jacod et al. (2008), Jacod and Podolskij (2013)
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Concentration inequalities for S = 1
n

∑n
i=1 detΞ

2
i

Lemma (Sub-gaussian lower tail)

The following inequality holds:

P (S− E[S] ≤ −ε) ≤ exp
(

−ε2n2

4
∑n

i=1 E[detΞ
4
i ]

)
.

Note: here it is difficult to evaluate E[detΞ4
i ]!

Lemma (Upper tail)

The following bound holds:

P (S− E[S] ≥ ε) ≤ exp

− 2ε2n2∑n
i=1

∏d
j=1

(
tr
(
Σj

i

)
+ ∥µj

i∥2 + cji
)
+ dne−c,

where cji is a constant.
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Upper tail of S = 1
n

∑n
i=1 detΞ

2
i . Details of the proof.

▶ Probability space Ω is splitted in two subspaces: Ω+
c contains events in which

detΞ2
i is bounded, and the other is equal to Ω̄+

c = Ω \ Ω+
c .

▶ Define the set Ω+
c ⊂ Ω as follows:

Ω+
c :=

{∥∥∥ξji∥∥∥2 ≤ E

[∥∥∥ξji∥∥∥2]+ cji ∀j ∈ 1, . . . d, i = 1, . . . , n
}
, (7)

where ∥ · ∥ is the Euclidean norm,
▶ cji is given as follows:

cji = tr
(
Σj

i

)(
d+ 2

√
dc+ 2c− 1

)
+ 2

∥∥∥µj
i

∥∥∥2√ c
d
,

and the constant c is independent of i and j.
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Upper tail of S = 1
n

∑n
i=1 detΞ

2
i . Details of the proof.

We evaluate the probability by the following two lemmas:

Lemma
The following holds:

P(Ω̄+
c ) ≤ dne−c

Lemma
In Ω+

c the following inequality holds:

P

(
S− E[S] ≥ ε

∣∣∣∣Ω+
c

)
≤ exp

− 2ε2n2∑n
i=1

∏d
j=1

(
tr
(
Σj

i

)
+ ∥µj

i∥2 + cji
)
 .
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Conclusions of the Chapter

▶ In 2-dimensional case: the law of S can be written explicitly.
• For a practical application, a good estimator of drift is required.

▶ In d-dimensional case: the law of S cannot be written explicitly, but the lower
and upper tail probabilities can be evaluated with concentration inequalities.

• The lower bound is difficult to evaluate because it depends on the moments of
detΞ2

i .
• The upper-bound is not sub-Gaussian and its sharpness decreases rapidly as d

increases.
• The constants are difficult to tune.
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Thank you for your attention!
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